Strains and Polarization During Antiferroelectric–Ferroelectric Phase Switching in Pb0.99Nb0.02[(Zr0.57Sn0.43)1−yTiy]0.98O3 Ceramics
نویسندگان
چکیده
The electric field-induced antiferroelectric-to-ferroelectric phase transition is investigated through detailed measurements of electric polarization P, longitudinal strain x33, and transverse strain x11 developed under applied electric fields in a series of Pb0.99Nb0.02[(Zr0.57Sn0.43)1−yTiy]0.98O3 ceramics with compositions close to the antiferroelectric/ferroelectric phase boundary. It is found that the volume expansion, expressed as (x33+2x11), at the antiferroelectric-to-ferroelectric phase transition remains ∼0.4% regardless of the composition in the range of 0.060≤y≤0.075. However, the induced ferroelectric phase in compositions y≥0.069 becomes metastable and the ferroelectric-toantiferroelectric phase transition does not occur during the unloading of the applied field. This reverse phase transition occurs partially when electric fields with reversed polarity are applied. As a consequence, the switchable mechanical strains in compositions y≥0.069 are significantly reduced as y (Ti content) increases even though the switchable polarization remains at a high value.
منابع مشابه
Transformation toughening in an antiferroelectric ceramic
Due to a larger specific volume of the ferroelectric phase, the antiferroelectric-ferroelectric transition is believed to have an enhanced toughening effect against fracture. The toughening requires a non-recoverable transformation in the crack process zone. Complementary measurement of the crystal symmetry, dielectric constant, field-induced polarization, and Raman spectrum on ceramic Pb0.99Nb...
متن کاملIn situ Transmission Electron Microscopy Studies of Electric-field-induced Phenomena in Ferroelectrics
High electric fields were delivered to specimens during imaging in the transmission electron microscopy (TEM) chamber to reveal details of electric field-induced phenomena in ferroelectric oxides. These include the polarization switching in nanometer-sized ferroelectric domains and the grain boundary cavitation in a commercial lead zirconate titanate (PZT) polycrystalline ceramic, the domain wa...
متن کاملSuppression of the antiferroelectric phase during polarization cycling of an induced ferroelectric phase
The ceramic Pb0.99Nb0.02[(Zr0.57Sn0.43)0.92Ti0.08]0.98O3 can exist in either an antiferroelectric or a ferroelectric phase at room temperature, depending on the thermal and electrical history. The antiferroelectric phase can be partially recovered from the induced ferroelectric phase when the applied field reverses polarity. Therefore, polarization cycling of the ferroelectric phase in the cera...
متن کاملAntiferroelectric Shape Memory Ceramics
Antiferroelectrics (AFE) can exhibit a “shape memory function controllable by electric field”, with huge isotropic volumetric expansion (0.26%) associated with the AFE to Ferroelectric (FE) phase transformation. Small inverse electric field application can realize the original AFE phase. The response speed is quick (2.5 ms). In the Pb0.99Nb0.02[(Zr0.6Sn0.4)1-yTiy]0.98O3 (PNZST) system, the shap...
متن کاملImpact of phase transition sequence on the electrocaloric effect in Pb(Nb,Zr,Sn,Ti)O-3 ceramics
The phase transition sequence in PbZrO3-based ceramics can be readily altered by chemical modification. In Pb0.99Nb0.02[(Zr0.57Sn0.43)(0.92)Ti-0.08](0.98)O-3 (PNZST 43/8/2), the sequence is ferroelectricantiferroelectric-paraelectric during heating, while in Pb0.99Nb0.02 (Zr0.85Sn0.13Ti0.02)(0.98)O-3 (PNZST 13/2/2), it is antiferroelectric-ferroelectric-paraelectric during heating. The electroc...
متن کامل